Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 215
1.
Schizophr Res ; 267: 330-340, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38613864

Deficits in social cognition (SC) interfere with recovery in schizophrenia (SZ) and may be related to resting state brain connectivity. This study aimed at assessing the alterations in the relationship between resting state functional connectivity and the social-cognitive abilities of patients with SZ compared to healthy subjects. We divided the brain into 246 regions of interest (ROI) following the Human Healthy Volunteers Brainnetome Atlas. For each participant, we calculated the resting-state functional connectivity (rsFC) in terms of degree centrality (DC), which evaluates the total strength of the most powerful coactivations of every ROI with all other ROIs during rest. The rs-DC of the ROIs was correlated with five measures of SC assessing emotion processing and mentalizing in 45 healthy volunteers (HVs) chosen as a normative sample. Then, controlling for symptoms severity, we verified whether these significant associations were altered, i.e., absent or of opposite sign, in 55 patients with SZ. We found five significant differences between SZ patients and HVs: in the patients' group, the correlations between emotion recognition tasks and rsFC of the right entorhinal cortex (R-EC), left superior parietal lobule (L-SPL), right caudal hippocampus (R-c-Hipp), and the right caudal (R-c) and left rostral (L-r) middle temporal gyri (MTG) were lost. An altered resting state functional connectivity of the L-SPL, R-EC, R-c-Hipp, and bilateral MTG in patients with SZ may be associated with impaired emotion recognition. If confirmed, these results may enhance the development of non-invasive brain stimulation interventions targeting those cerebral regions to reduce SC deficit in SZ.

2.
Res Sq ; 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38559014

Symptom heterogeneity characterizes psychotic disorders and hinders the delineation of underlying biomarkers. Here, we identify symptom-based subtypes of recent-onset psychosis (ROP) patients from the multi-center PRONIA (Personalized Prognostic Tools for Early Psychosis Management) database and explore their multimodal biological and functional signatures. We clustered N = 328 ROP patients based on their maximum factor scores in an exploratory factor analysis on the Positive and Negative Syndrome Scale items. We assessed inter-subgroup differences and compared to N = 464 healthy control (HC) individuals regarding gray matter volume (GMV), neurocognition, polygenic risk scores, and longitudinal functioning trajectories. Finally, we evaluated factor stability at 9- and 18-month follow-ups. A 4-factor solution optimally explained symptom heterogeneity, showing moderate longitudinal stability. The ROP-MOTCOG (Motor/Cognition) subgroup was characterized by GMV reductions within salience, control and default mode networks, predominantly throughout cingulate regions, relative to HC individuals, had the most impaired neurocognition and the highest genetic liability for schizophrenia. ROP-SOCWD (Social Withdrawal) patients showed GMV reductions within medial fronto-temporal regions of the control, default mode, and salience networks, and had the lowest social functioning across time points. ROP-POS (Positive) evidenced GMV decreases in salience, limbic and frontal regions of the control and default mode networks. The ROP-AFF (Affective) subgroup showed GMV reductions in the salience, limbic, and posterior default-mode and control networks, thalamus and cerebellum. GMV reductions in fronto-temporal regions of the salience and control networks were shared across subgroups. Our results highlight the existence of behavioral subgroups with distinct neurobiological and functional profiles in early psychosis, emphasizing the need for refined symptom-based diagnosis and prognosis frameworks.

3.
Nat Commun ; 15(1): 3342, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38688917

The polygenic architecture of schizophrenia implicates several molecular pathways involved in synaptic function. However, it is unclear how polygenic risk funnels through these pathways to translate into syndromic illness. Using tensor decomposition, we analyze gene co-expression in the caudate nucleus, hippocampus, and dorsolateral prefrontal cortex of post-mortem brain samples from 358 individuals. We identify a set of genes predominantly expressed in the caudate nucleus and associated with both clinical state and genetic risk for schizophrenia that shows dopaminergic selectivity. A higher polygenic risk score for schizophrenia parsed by this set of genes predicts greater dopamine synthesis in the striatum and greater striatal activation during reward anticipation. These results translate dopamine-linked genetic risk variation into in vivo neurochemical and hemodynamic phenotypes in the striatum that have long been implicated in the pathophysiology of schizophrenia.


Corpus Striatum , Dopamine , Schizophrenia , Humans , Dopamine/metabolism , Dopamine/biosynthesis , Schizophrenia/genetics , Schizophrenia/metabolism , Male , Female , Corpus Striatum/metabolism , Adult , Caudate Nucleus/metabolism , Signal Transduction , Middle Aged , Hippocampus/metabolism , Multifactorial Inheritance , Genetic Predisposition to Disease , Dorsolateral Prefrontal Cortex/metabolism , Reward
4.
Mol Psychiatry ; 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38532008

Cognitive dysfunctions are core-enduring symptoms of schizophrenia, with important sex-related differences. Genetic variants of the DTBPN1 gene associated with reduced dysbindin-1 protein (Dys) expression negatively impact cognitive functions in schizophrenia through a functional epistatic interaction with Catechol-O-methyltransferase (COMT). Dys is involved in the trafficking of dopaminergic receptors, crucial for prefrontal cortex (PFC) signaling regulation. Moreover, dopamine signaling is modulated by estrogens via inhibition of COMT expression. We hypothesized a sex dimorphism in Dys-related cognitive functions dependent on COMT and estrogen levels. Our multidisciplinary approach combined behavioral-molecular findings on genetically modified mice, human postmortem Dys expression data, and in vivo fMRI during a working memory task performance. We found cognitive impairments in male mice related to genetic variants characterized by reduced Dys protein expression (pBonferroni = 0.0001), as well as in male humans through a COMT/Dys functional epistatic interaction involving PFC brain activity during working memory (t(23) = -3.21; pFDR = 0.004). Dorsolateral PFC activity was associated with lower working memory performance in males only (p = 0.04). Also, male humans showed decreased Dys expression in dorsolateral PFC during adulthood (pFDR = 0.05). Female Dys mice showed preserved cognitive performances with deficits only with a lack of estrogen tested in an ovariectomy model (pBonferroni = 0.0001), suggesting that genetic variants reducing Dys protein expression could probably become functional in females when the protective effect of estrogens is attenuated, i.e., during menopause. Overall, our results show the differential impact of functional variants of the DTBPN1 gene interacting with COMT on cognitive functions across sexes in mice and humans, underlying the importance of considering sex as a target for patient stratification and precision medicine in schizophrenia.

6.
Article En | MEDLINE | ID: mdl-38461964

BACKGROUND: Psychosis and depression patients exhibit widespread neurobiological abnormalities. The analysis of dynamic functional connectivity (dFC), allows for the detection of changes in complex brain activity patterns, providing insights into common and unique processes underlying these disorders. METHODS: In the present study, we report the analysis of dFC in a large patient sample including 127 clinical high-risk patients (CHR), 142 recent-onset psychosis (ROP) patients, 134 recent-onset depression (ROD) patients, and 256 healthy controls (HC). A sliding window-based technique was used to calculate the time-dependent FC in resting-state MRI data, followed by clustering to reveal recurrent FC states in each diagnostic group. RESULTS: We identified five unique FC states, which could be identified in all groups with high consistency (rmean = 0.889, sd = 0.116). Analysis of dynamic parameters of these states showed a characteristic increase in the lifetime and frequency of a weakly-connected FC state in ROD patients (p < 0.0005) compared to most other groups, and a common increase in the lifetime of a FC state characterised by high sensorimotor and cingulo-opercular connectivities in all patient groups compared to the HC group (p < 0.0002). Canonical correlation analysis revealed a mode which exhibited significant correlations between dFC parameters and clinical variables (r = 0.617, p < 0.0029), which was associated with positive psychosis symptom severity and several dFC parameters. CONCLUSIONS: Our findings indicate diagnosis-specific alterations of dFC and underline the potential of dynamic analysis to characterize disorders such as depression, psychosis and clinical risk states.

7.
Psychol Med ; : 1-10, 2024 Feb 02.
Article En | MEDLINE | ID: mdl-38305128

BACKGROUND: Previous evidence suggests that early life complications (ELCs) interact with polygenic risk for schizophrenia (SCZ) in increasing risk for the disease. However, no studies have investigated this interaction on neurobiological phenotypes. Among those, anomalous emotion-related brain activity has been reported in SCZ, even if evidence of its link with SCZ-related genetic risk is not solid. Indeed, it is possible this relationship is influenced by non-genetic risk factors. Thus, this study investigated the interaction between SCZ-related polygenic risk and ELCs on emotion-related brain activity. METHODS: 169 healthy participants (HP) in a discovery and 113 HP in a replication sample underwent functional magnetic resonance imaging (fMRI) during emotion processing, were categorized for history of ELCs and genome-wide genotyped. Polygenic risk scores (PRSs) were computed using SCZ-associated variants considering the most recent genome-wide association study. Furthermore, 75 patients with SCZ also underwent fMRI during emotion processing to verify consistency of their brain activity patterns with those associated with risk factors for SCZ in HP. RESULTS: Results in the discovery and replication samples indicated no effect of PRSs, but an interaction between PRS and ELCs in left ventrolateral prefrontal cortex (VLPFC), where the greater the activity, the greater PRS only in presence of ELCs. Moreover, SCZ had greater VLPFC response than HP. CONCLUSIONS: These results suggest that emotion-related VLPFC response lies in the path from genetic and non-genetic risk factors to the clinical presentation of SCZ, and may implicate an updated concept of intermediate phenotype considering early non-genetic factors of risk for SCZ.

8.
Neuropsychopharmacology ; 49(3): 573-583, 2024 Feb.
Article En | MEDLINE | ID: mdl-37737273

Cognitively impaired and spared patient subgroups were identified in psychosis and depression, and in clinical high-risk for psychosis (CHR). Studies suggest differences in underlying brain structural and functional characteristics. It is unclear whether cognitive subgroups are transdiagnostic phenomena in early stages of psychotic and affective disorder which can be validated on the neural level. Patients with recent-onset psychosis (ROP; N = 140; female = 54), recent-onset depression (ROD; N = 130; female = 73), CHR (N = 128; female = 61) and healthy controls (HC; N = 270; female = 165) were recruited through the multi-site study PRONIA. The transdiagnostic sample and individual study groups were clustered into subgroups based on their performance in eight cognitive domains and characterized by gray matter volume (sMRI) and resting-state functional connectivity (rsFC) using support vector machine (SVM) classification. We identified an impaired subgroup (NROP = 79, NROD = 30, NCHR = 37) showing cognitive impairment in executive functioning, working memory, processing speed and verbal learning (all p < 0.001). A spared subgroup (NROP = 61, NROD = 100, NCHR = 91) performed comparable to HC. Single-disease subgroups indicated that cognitive impairment is stronger pronounced in impaired ROP compared to impaired ROD and CHR. Subgroups in ROP and ROD showed specific symptom- and functioning-patterns. rsFC showed superior accuracy compared to sMRI in differentiating transdiagnostic subgroups from HC (BACimpaired = 58.5%; BACspared = 61.7%, both: p < 0.01). Cognitive findings were validated in the PRONIA replication sample (N = 409). Individual cognitive subgroups in ROP, ROD and CHR are more informative than transdiagnostic subgroups as they map onto individual cognitive impairment and specific functioning- and symptom-patterns which show limited overlap in sMRI and rsFC. CLINICAL TRIAL REGISTRY NAME: German Clinical Trials Register (DRKS). Clinical trial registry URL: https://www.drks.de/drks_web/ . Clinical trial registry number: DRKS00005042.


Cognitive Dysfunction , Psychotic Disorders , Female , Humans , Brain/diagnostic imaging , Cognitive Dysfunction/diagnosis , Executive Function , Gray Matter/diagnostic imaging , Psychotic Disorders/complications , Psychotic Disorders/diagnosis , Male , Multicenter Studies as Topic
9.
Article En | MEDLINE | ID: mdl-38000716

BACKGROUND: miR-137 is a microRNA involved in brain development, regulating neurogenesis and neuronal maturation. Genome-wide association studies have implicated miR-137 in schizophrenia risk but do not explain its involvement in brain function and underlying biology. Polygenic risk for schizophrenia mediated by miR-137 targets is associated with working memory, although other evidence points to emotion processing. We characterized the functional brain correlates of miR-137 target genes associated with schizophrenia while disentangling previously reported associations of miR-137 targets with working memory and emotion processing. METHODS: Using RNA sequencing data from postmortem prefrontal cortex (N = 522), we identified a coexpression gene set enriched for miR-137 targets and schizophrenia risk genes. We validated the relationship of this set to miR-137 in vitro by manipulating miR-137 expression in neuroblastoma cells. We translated this gene set into polygenic scores of coexpression prediction and associated them with functional magnetic resonance imaging activation in healthy volunteers (n1 = 214; n2 = 136; n3 = 2075; n4 = 1800) and with short-term treatment response in patients with schizophrenia (N = 427). RESULTS: In 4652 human participants, we found that 1) schizophrenia risk genes were coexpressed in a biologically validated set enriched for miR-137 targets; 2) increased expression of miR-137 target risk genes was mediated by low prefrontal miR-137 expression; 3) alleles that predict greater gene set coexpression were associated with greater prefrontal activation during emotion processing in 3 independent healthy cohorts (n1, n2, n3) in interaction with age (n4); and 4) these alleles predicted less improvement in negative symptoms following antipsychotic treatment in patients with schizophrenia. CONCLUSIONS: The functional translation of miR-137 target gene expression linked with schizophrenia involves the neural substrates of emotion processing.


MicroRNAs , Schizophrenia , Humans , Genome-Wide Association Study , Brain , MicroRNAs/genetics , MicroRNAs/metabolism , Emotions
10.
Br J Psychiatry ; 224(2): 55-65, 2024 02.
Article En | MEDLINE | ID: mdl-37936347

BACKGROUND: Computational models offer promising potential for personalised treatment of psychiatric diseases. For their clinical deployment, fairness must be evaluated alongside accuracy. Fairness requires predictive models to not unfairly disadvantage specific demographic groups. Failure to assess model fairness prior to use risks perpetuating healthcare inequalities. Despite its importance, empirical investigation of fairness in predictive models for psychiatry remains scarce. AIMS: To evaluate fairness in prediction models for development of psychosis and functional outcome. METHOD: Using data from the PRONIA study, we examined fairness in 13 published models for prediction of transition to psychosis (n = 11) and functional outcome (n = 2) in people at clinical high risk for psychosis or with recent-onset depression. Using accuracy equality, predictive parity, false-positive error rate balance and false-negative error rate balance, we evaluated relevant fairness aspects for the demographic attributes 'gender' and 'educational attainment' and compared them with the fairness of clinicians' judgements. RESULTS: Our findings indicate systematic bias towards assigning less favourable outcomes to individuals with lower educational attainment in both prediction models and clinicians' judgements, resulting in higher false-positive rates in 7 of 11 models for transition to psychosis. Interestingly, the bias patterns observed in algorithmic predictions were not significantly more pronounced than those in clinicians' predictions. CONCLUSIONS: Educational bias was present in algorithmic and clinicians' predictions, assuming more favourable outcomes for individuals with higher educational level (years of education). This bias might lead to increased stigma and psychosocial burden in patients with lower educational attainment and suboptimal psychosis prevention in those with higher educational attainment.


Psychiatry , Psychotic Disorders , Humans , Psychotic Disorders/therapy
11.
bioRxiv ; 2023 Dec 02.
Article En | MEDLINE | ID: mdl-38076938

We present an empirically benchmarked framework for sex-specific normative modeling of brain morphometry that can inform about the biological and behavioral significance of deviations from typical age-related neuroanatomical changes and support future study designs. This framework was developed using regional morphometric data from 37,407 healthy individuals (53% female; aged 3-90 years) following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The Multivariate Factorial Polynomial Regression (MFPR) emerged as the preferred algorithm optimized using nonlinear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins, and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3,000 study participants. The model and scripts described here are freely available through CentileBrain (https://centilebrain.org/).

12.
Eur Psychiatry ; 67(1): e3, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38097401

BACKGROUND: The conceptualization of negative symptoms (NS) in schizophrenia is still controversial. Recent confirmatory factor-analytic studies suggested that the bi-dimensional model (motivational deficit [MAP] and expressive deficit [EXP]) may not capture the complexity of NS structure, which could be better defined by a five-factor (five NS domains) or a hierarchical model (five NS domains as first-order factors, and MAP and EXP, as second-order factors). A validation of these models is needed to define the structure of NS. To evaluate the validity and temporal stability of the five-factor or the hierarchical structure of the brief negative symptom scale (BNSS) in individuals with schizophrenia (SCZ), exploring associations between these models with cognition, social cognition, functional capacity, and functioning at baseline and at 4 years follow-up. METHODS: Clinical variables were assessed using state-of-the-art tools in 612 SCZ at two-time points. The validity of the five-factor and the hierarchical models was analyzed through structural equation models. RESULTS: The two models had both a good fit and showed a similar pattern of associations with external validators at the two-time points, with minor variations. The five-factor solution had a slightly better fit. The associations with external validators favored the five-factor structure. CONCLUSIONS: Our findings suggest that both five-factor and hierarchical models provide a valid conceptualization of NS in relation to external variables and that five-factor solution provides the best balance between parsimony and granularity to summarize the BNSS structure. This finding has important implications for the study of pathophysiological mechanisms and the development of new treatments.


Schizophrenia , Schizophrenic Psychology , Humans , Cognition , Models, Theoretical , Psychiatric Status Rating Scales
13.
Br J Psychiatry ; 223(4): 485-492, 2023 10.
Article En | MEDLINE | ID: mdl-37846967

BACKGROUND: Neurocognitive deficits are a core feature of psychosis and depression. Despite commonalities in cognitive alterations, it remains unclear if and how the cognitive deficits in patients at clinical high risk for psychosis (CHR) and those with recent-onset psychosis (ROP) are distinct from those seen in recent-onset depression (ROD). AIMS: This study was carried out within the European project 'Personalized Prognostic Tools for Early Psychosis Management', and aimed to characterise the cognitive profiles of patients with psychosis or depression. METHOD: We examined cognitive profiles for patients with ROP (n = 105), patients with ROD (n = 123), patients at CHR (n = 116) and healthy controls (n = 372) across seven sites in five European countries. Confirmatory factor analysis identified four cognitive factors independent of gender, education and site: speed of processing, attention and working memory, verbal learning and spatial learning. RESULTS: Patients with ROP performed worse than healthy controls in all four domains (P < 0.001), whereas performance of patients with ROD was not affected (P > 0.05). Patients at CHR performed worse than healthy controls in speed of processing (P = 0.001) and spatial learning (P = 0.003), but better than patients with ROP across all cognitive domains (all P ≤ 0.01). CHR and ROD groups did not significantly differ in any cognitive domain. These findings were independent of comorbid depressive symptoms, substance consumption and illness duration. CONCLUSIONS: These results show that neurocognitive abilities are affected in CHR and ROP, whereas ROD seems spared. Although our findings may support the notion that those at CHR have a specific vulnerability to psychosis, future studies investigating broader transdiagnostic risk cohorts in longitudinal designs are needed.


Cognition Disorders , Cognitive Dysfunction , Psychotic Disorders , Humans , Depression/epidemiology , Neuropsychological Tests , Psychotic Disorders/psychology , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/etiology
14.
bioRxiv ; 2023 Sep 21.
Article En | MEDLINE | ID: mdl-37786720

Schizophrenia (SCZ) is characterized by a polygenic risk architecture implicating diverse molecular pathways important for synaptic function. However, how polygenic risk funnels through these pathways to translate into syndromic illness is unanswered. To evaluate biologically meaningful pathways of risk, we used tensor decomposition to characterize gene co-expression in post-mortem brain (of neurotypicals: N=154; patients with SCZ: N=84; and GTEX samples N=120) from caudate nucleus (CN), hippocampus (HP), and dorsolateral prefrontal cortex (DLPFC). We identified a CN-predominant gene set showing dopaminergic selectivity that was enriched for genes associated with clinical state and for genes associated with SCZ risk. Parsing polygenic risk score for SCZ based on this specific gene set (parsed-PRS), we found that greater pathway-specific SCZ risk predicted greater in vivo striatal dopamine synthesis capacity measured by [ 18 F]-FDOPA PET in three independent cohorts of neurotypicals and patients (total N=235) and greater fMRI striatal activation during reward anticipation in two additional independent neurotypical cohorts (total N=141). These results reveal a 'bench to bedside' translation of dopamine-linked genetic risk variation in driving in vivo striatal neurochemical and hemodynamic phenotypes that have long been implicated in the pathophysiology of SCZ.

15.
Eur Psychiatry ; 66(1): e85, 2023 10 23.
Article En | MEDLINE | ID: mdl-37869966

BACKGROUND: Autistic symptoms represent a frequent feature in schizophrenia spectrum disorders (SSD). However, the prevalence and the cognitive and functional correlates of autistic symptoms in unaffected first-degree relatives of people with SSD remain to be assessed. METHODS: A total of 342 unaffected first-degree relatives related to 247 outpatients with schizophrenia were recruited as part of the multicenter study of the Italian Network for Research on Psychoses (NIRP). Autistic features were measured with the PANSS Autism Severity Scale. Three groups of participants, defined on the presence and severity of autistic symptoms, were compared on a wide array of cognitive and functional measures. RESULTS: Of the total sample, 44.9% presented autistic symptoms; 22.8% showed moderate levels of autistic symptoms, which can be observed in the majority of people with SSD. Participants with higher levels of autistic symptoms showed worse performance on Working Memory (p = 0.014) and Social Cognition (p = 0.025) domains and in the Global Cognition composite score (p = 0.008), as well as worse on functional capacity (p = 0.001), global psychosocial functioning (p < 0.001), real-world interpersonal relationships (p < 0.001), participation in community activities (p = 0.017), and work skills (p = 0.006). CONCLUSIONS: A high prevalence of autistic symptoms was observed in first-degree relatives of people with SSD. Autistic symptoms severity showed a negative correlation with cognitive performance and functional outcomes also in this population and may represent a diagnostic and treatment target of considerable scientific and clinical interest in both patients and their first-degree relatives.


Autistic Disorder , Psychotic Disorders , Schizophrenia , Humans , Schizophrenia/diagnosis , Schizophrenia/epidemiology , Psychotic Disorders/epidemiology , Interpersonal Relations , Italy/epidemiology
16.
J Psychiatry Neurosci ; 48(5): E357-E366, 2023.
Article En | MEDLINE | ID: mdl-37751917

BACKGROUND: Among healthy participants, the interindividual variability of brain response to facial emotions is associated with genetic variation, including common risk variants for schizophrenia, a heritable brain disorder characterized by anomalies in emotion processing. We aimed to identify genetic variants associated with heritable brain activity during processing of facial emotions among healthy participants and to explore the impact of these identified variants among patients with schizophrenia. METHODS: We conducted a data-driven stepwise study including samples of healthy twins, unrelated healthy participants and patients with schizophrenia. Participants approached or avoided pictures of faces with negative emotional valence during functional magnetic resonance imaging (fMRI). RESULTS: We investigated 3 samples of healthy participants - including 28 healthy twin pairs, 289 unrelated healthy participants (genome-wide association study [GWAS] discovery sample) and 90 unrelated healthy participants (replication sample) - and 1 sample of 48 patients with schizophrenia. Among healthy twins, we identified the amygdala as the brain region with the highest heritability during processing of angry faces (heritability estimate 0.54, p < 0.001). Subsequent GWAS in both discovery and replication samples of healthy non-twins indicated that amygdala activity was associated with a polymorphism in the miR-137 locus (rs1198575), a micro-RNA strongly involved in risk for schizophrenia. A significant effect in the same direction was found among patients with schizophrenia (p = 0.03). LIMITATIONS: The limited sample size available for GWAS analyses may require further replication of results. CONCLUSION: Our data-driven approach shows preliminary evidence that amygdala activity, as evaluated with our task, is heritable. Our genetic associations preliminarily suggest a role for miR-137 in brain activity during explicit processing of facial emotions among healthy participants and patients with schizophrenia, pointing to the amygdala as a brain region whose activity is related to miR-137.


MicroRNAs , Schizophrenia , Humans , Amygdala/diagnostic imaging , Anger , Genome-Wide Association Study , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Case-Control Studies
17.
BJPsych Open ; 9(5): e168, 2023 Sep 07.
Article En | MEDLINE | ID: mdl-37674282

BACKGROUND: The structure of negative symptoms of schizophrenia is still a matter of controversy. Although a two-dimensional model (comprising the expressive deficit dimension and the motivation and pleasure dimension) has gained a large consensus, it has been questioned by recent investigations. AIMS: To investigate the latent structure of negative symptoms and its stability over time in people with schizophrenia using network analysis. METHOD: Negative symptoms were assessed in 612 people with schizophrenia using the Brief Negative Symptom Scale (BNSS) at baseline and at 4-year follow-up. A network invariance analysis was conducted to investigate changes in the network structure and strength of connections between the two time points. RESULTS: The network analysis carried out at baseline and follow-up, supported by community detection analysis, indicated that the BNSS's items aggregate to form four or five distinct domains (avolition/asociality, anhedonia, blunted affect and alogia). The network invariance test indicated that the network structure remained unchanged over time (network invariance test score 0.13; P = 0.169), although its overall strength decreased (6.28 at baseline, 5.79 at follow-up; global strength invariance test score 0.48; P = 0.016). CONCLUSIONS: The results lend support to a four- or five-factor model of negative symptoms and indicate overall stability over time. These data have implications for the study of pathophysiological mechanisms and the development of targeted treatments for negative symptoms.

18.
Proc Natl Acad Sci U S A ; 120(32): e2221533120, 2023 08 08.
Article En | MEDLINE | ID: mdl-37527347

Alterations in fMRI-based brain functional network connectivity (FNC) are associated with schizophrenia (SCZ) and the genetic risk or subthreshold clinical symptoms preceding the onset of SCZ, which often occurs in early adulthood. Thus, age-sensitive FNC changes may be relevant to SCZ risk-related FNC. We used independent component analysis to estimate FNC from childhood to adulthood in 9,236 individuals. To capture individual brain features more accurately than single-session fMRI, we studied an average of three fMRI scans per individual. To identify potential familial risk-related FNC changes, we compared age-related FNC in first-degree relatives of SCZ patients mostly including unaffected siblings (SIB) with neurotypical controls (NC) at the same age stage. Then, we examined how polygenic risk scores for SCZ influenced risk-related FNC patterns. Finally, we investigated the same risk-related FNC patterns in adult SCZ patients (oSCZ) and young individuals with subclinical psychotic symptoms (PSY). Age-sensitive risk-related FNC patterns emerge during adolescence and early adulthood, but not before. Young SIB always followed older NC patterns, with decreased FNC in a cerebellar-occipitoparietal circuit and increased FNC in two prefrontal-sensorimotor circuits when compared to young NC. Two of these FNC alterations were also found in oSCZ, with one exhibiting reversed pattern. All were linked to polygenic risk for SCZ in unrelated individuals (R2 varied from 0.02 to 0.05). Young PSY showed FNC alterations in the same direction as SIB when compared to NC. These results suggest that age-related neurotypical FNC correlates with genetic risk for SCZ and is detectable with MRI in young participants.


Psychotic Disorders , Schizophrenia , Adult , Adolescent , Humans , Child , Young Adult , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Risk Factors
19.
Schizophr Res ; 260: 76-84, 2023 10.
Article En | MEDLINE | ID: mdl-37633126

Cognitive impairment has been associated with poor real-world functioning in patients with Schizophrenia. Previous studies have shown that pharmacological treatment with anticholinergic properties may contribute to cognitive impairment in Schizophrenia. We investigated the effect of the anticholinergic burden (ACB) on brain activity, cognition, and real-world functioning in Schizophrenia. We hypothesized that greater ACB would be associated with altered brain activity along with poorer cognitive performance and lower real-world functioning. A sample of 100 patients with a diagnosis of schizophrenia or schizoaffective disorder was recruited in the naturalistic multicenter study of the Italian Network for Research on Psychoses (NIRP) across 7 centres. For each participant, ACB was evaluated using the Anticholinergic Cognitive Burden scale. The association of ACB with brain function was assessed using BOLD fMRI during the N-Back Working Memory (WM) task in a nested cohort (N = 31). Real-world functioning was assessed using the Specific Level of Functioning (SLOF) scale. Patients with high ACB scores (≥3) showed lower brain activity in the WM frontoparietal network (TFCE corrected alpha <0.05) and poorer cognitive performance (p = 0.05) than patients with low ACB scores (<3). Both effects were unaffected by demographic characteristics, clinical severity, and antipsychotic dosage. Moreover, patients with high ACB showed poorer real-world functioning than patients with lower ACB (p = 0.03). Our results suggest that ACB in Schizophrenia is associated with impaired WM and abnormal underlying brain function along with reduced real-world functioning. Clinical practice should consider the potential adverse cognitive effects of ACB in the treatment decision-making process.


Cholinergic Antagonists , Schizophrenia , Humans , Brain/diagnostic imaging , Cholinergic Antagonists/adverse effects , Cognitive Dysfunction/etiology , Cognitive Dysfunction/chemically induced , Memory, Short-Term , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy
20.
Psychol Med ; 53(13): 5945-5957, 2023 10.
Article En | MEDLINE | ID: mdl-37409883

BACKGROUND: Studies investigating cognitive impairments in psychosis and depression have typically compared the average performance of the clinical group against healthy controls (HC), and do not report on the actual prevalence of cognitive impairments or strengths within these clinical groups. This information is essential so that clinical services can provide adequate resources to supporting cognitive functioning. Thus, we investigated this prevalence in individuals in the early course of psychosis or depression. METHODS: A comprehensive cognitive test battery comprising 12 tests was completed by 1286 individuals aged 15-41 (mean age 25.07, s.d. 5.88) from the PRONIA study at baseline: HC (N = 454), clinical high risk for psychosis (CHR; N = 270), recent-onset depression (ROD; N = 267), and recent-onset psychosis (ROP; N = 295). Z-scores were calculated to estimate the prevalence of moderate or severe deficits or strengths (>2 s.d. or 1-2 s.d. below or above HC, respectively) for each cognitive test. RESULTS: Impairment in at least two cognitive tests was as follows: ROP (88.3% moderately, 45.1% severely impaired), CHR (71.2% moderately, 22.4% severely impaired), ROD (61.6% moderately, 16.2% severely impaired). Across clinical groups, impairments were most prevalent in tests of working memory, processing speed, and verbal learning. Above average performance (>1 s.d.) in at least two tests was present for 40.5% ROD, 36.1% CHR, 16.1% ROP, and was >2 SDs in 1.8% ROD, 1.4% CHR, and 0% ROP. CONCLUSIONS: These findings suggest that interventions should be tailored to the individual, with working memory, processing speed, and verbal learning likely to be important transdiagnostic targets.


Cognition Disorders , Cognitive Dysfunction , Psychotic Disorders , Humans , Adult , Depression/epidemiology , Prevalence , Psychotic Disorders/psychology , Cognitive Dysfunction/epidemiology , Cognition Disorders/psychology , Neuropsychological Tests
...